Improving K-means clustering algorithm with the intelligent water drops (IWD) algorithm

نویسنده

  • Hamed Shah-Hosseini
چکیده

In this paper, the K-means algorithm for data clustering is improved by the swarm-based nature-inspired optimisation algorithm, the intelligent water drops (IWD) algorithm. The K-means algorithm is an iterative algorithm in which the number of clusters is given in advance. Although the K-means is fast to converge, it is sensitive to the initial conditions. As a result, it is often trapped in local optimums. The IWD algorithm, which mimics the actions and reactions between natural water drops in real rivers, is modified to implicitly embed in itself the main processes of the K-means algorithm. The modified algorithm called IWD-KM is tested with several well-known datasets for clustering, and its performance is compared with the K-means algorithm. The experimental results show the superiority of the proposed IWD-KM algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Intelligent Water Drops in Transient Analysis of Single Conductor Overhead Lines Terminated to Grid-Grounded Arrester under Direct Lightning Strikes

In this paper, Intelligent water drop algorithm (IWD) is used to analyze single overhead line connected to grid-grounded arrester. In this approach, at first Norton’s equivalent circuit of the overhead line over lossy soil is computed by method of moments (MoM) and then for the problem under consideration, a nonlinear equivalent circuit in the frequency domain is proposed. Finally applying inte...

متن کامل

A SAIWD-Based Approach for Simultaneous Reconfiguration and Optimal Siting and Sizing of Wind Turbines and DVR units in Distribution Systems

In this paper, a combination of simulated annealing (SA) and intelligent water drops (IWD) algorithm is used to solve the nonlinear/complex problem of simultaneous reconfiguration with optimal allocation (size and location) of wind turbine (WT) as a distributed generation (DG) and dynamic voltage restorer (DVR) as a distributed flexible AC transmission systems (DFACT) unit in a distribution sys...

متن کامل

Optimization with the Nature-Inspired Intelligent Water Drops Algorithm

Scientists are beginning to realize more and more that nature is a great source for inspiration in order to develop intelligent systems and algorithms. In the field of Computational Intelligence, especially Evolutionary Computation and Swarm-based systems, the degree of imitation from nature is surprisingly high and we are at the edge of developing and proposing new algorithms and/or systems, w...

متن کامل

Improved COA with Chaotic Initialization and Intelligent Migration for Data Clustering

A well-known clustering algorithm is K-means. This algorithm, besides advantages such as high speed and ease of employment, suffers from the problem of local optima. In order to overcome this problem, a lot of studies have been done in clustering. This paper presents a hybrid Extended Cuckoo Optimization Algorithm (ECOA) and K-means (K), which is called ECOA-K. The COA algorithm has advantages ...

متن کامل

An approach to continuous optimization by the Intelligent Water Drops algorithm

In this paper, the Intelligent Water Drops (IWD) algorithm is augmented with a mutation-based local search to find the optimal values of numerical functions. The proposed algorithm called the IWD-CO (IWD for continuous optimization) is tested with six different benchmark functions. The experimental results are satisfactory, which encourage further researches in this regard. © 2011 Published by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJDMMM

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2013